
International Journal of Theoretical Physics, Vol. 43, No. 6, June 2004 ( C© 2004)

New Method of Generating Exact Inflationary
Solutions in Generalized Einstein Theories
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Received

We discuss the general approach to finding exact inflationary solutions in generalized
Einstein theories. These solutions are found by taking the Hubble parameter directly as
a function of the field ϕ and then determining the evolution of the expansion scale factor
and the potential from it. This method allows the full dynamic behavior of the field to
be investigated in terms of the function H (ϕ) without needing to assume that friction
terms in the field equations dominate or that the field’s kinetic energy is negligible.
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1. INTRODUCTION

The inflationary scenario seeks to solve some puzzling cosmological ques-
tions (like the flatness and the isotropy problems) that are present in the standard
Big Bang theory, and it provides a mechanism for the generation of density per-
turbations needed to seed the formation of structures in the universe (Guth, 1981;
Linde, 1982, 1990). The essential qualitative feature of inflation, the acceleration
of the universe, is also required (albeit at a different rate) in the present epoch of
the universe in order to explain the data from high red shift supernovae (Perlmutter
et al., 1998; Riess et al., 1998).

The action describing the interaction between the gravitational field and a
scalar field is generally constructed using the minimal coupling principle (i.e.
ξ = 0). Recently, generalized versions of gravity theories in reconstructing the
early universe scenario have attracted a great deal of attention as a possible im-
provement of the minimal coupling case (Fakir and Unruh, 1992; Faraoni, 1996).
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There are many compelling reasons to include an explicit nonminimal (i.e. ξ �= 0)
coupling in the action. In many models of the very early Universe, the canonical
Einstein–Hilbert gravitational action emerges only as a low-energy effective the-
ory, rather than being assumed from the start (Adler, 1982). Naturally, assuming
that the early universe was dominated by some of these gravity theories, many
inflation models have been proposed based on generalized gravity theories. These
other-than-Einstein gravity theories naturally arise either from attempts to quantify
gravity (Birrell and Davies, 1982) or as the low-energy limits of the unified theo-
ries including gravity (Green et al., 1987). In principle, the consideration of such
an interaction allows one to take more properly into account the influence that, in
the very early Universe, the extremely high value of the curvature potentially had
in the dynamic behavior of this coupled system.

It is common to think that the inflationary scenario could be driven by the
presence of a scalar field with inflation potential. Most detailed studies of inflation
have been made by using numerical integration, or by employing an approxima-
tion scheme. The “slow-roll approximation” (Albrecht and Stenhardt, 1982; Guth,
1981; Linde, 1982), which neglects the most slowly changing terms in the equa-
tions of motion, is the one used most widely. Although this approximation works
well in many cases, we know that it must eventually fail if inflation has to end.
Moreover, even weak violations of it can result in significant deviations from the
standard predications for observables such as the spectrum of density perturbations
or the density of gravitational waves in the Universe. It is more difficult to achieve
the slow rolling of the scalar field when ξ �= 0. In fact, an almost flat section of the
potential V (ϕ) gives a slow rollover of ϕ when ξ = 0, but its shape is distorted by
the nonminimal coupling term ξ Rϕ2/2 in the Lagrangian density. The extra term
plays the role of an effective mass term for the inflation (Futamase and Maeda,
1989).

Slow roll is not, however, the only possibility for successfully implementing
models of inflation, and solutions outside the slow-roll approximation have been
found in minimal coupling cases (Wang, 2001a,b).

In this paper, we will extend our previous results adding to an explicit non-
minimal coupling in the action. We will discuss a general approach to finding exact
inflationary solutions in generalized Einstein theories. Exact inflationary solutions
are best achieved by expressing the Hubble parameter H during inflation as a
function of the scalar field ϕ. This involves using the inflation as an effective time
coordinate and allows the full dynamic behavior of the field to be investigated in
terms of the function H (ϕ) without needing to assume that friction terms in the
field equations dominate or that the field’s kinetic energy is negligible (Carr and
Lidsey, 1993).

This paper is organized as follows. In Section 2, we give a new method of
generating exact inflationary solutions in generalized Einstein theories. In Section
3, exact inflationary solutions in induced-gravity theory are discussed. In Section
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4, exact inflationary solutions with nonminimal coupling are computed. Section 5
contains the conclusions.

2. A NEW METHOD OF GENERATING EXACT INFLATIONARY
SOLUTIONS IN GENERALIZED EINSTEIN THEORIES

In inflationary theory it is assumed that the scalar field dominates the evolution
of the universe and that no forms of matter other than the scalar field ϕ are included
in the Lagrangian density. We shall adopt in the present paper the sign convention
for ξ such that the conformal coupling means ξ = −1/6 (Fakir and Unruh, 1990).
We start our analysis by searching for exact cosmological solutions from a generic
action where a scalar field ϕ is no minimally coupled with gravity

I =
∫

d4x
√−g

[
F(ϕ)R + 1

2
gµνϕ;µϕ;ν − V (ϕ)

]
, (1)

where V (ϕ) is generic potential for the scalar field ϕ and F(ϕ)the coupling for the
field ϕ. In this paper we restrict ourselves to

Induced gravity F(ϕ) = 1

2
ξϕ2, (2)

no minimally coupling F(ϕ) = 1

16πG
+ 1

2
ξϕ2. (3)

We assume a homogeneous distribution for the scalar field, and the line ele-
ment is taken to be that of the Robertson–Walker universe

ds2 = dt2 − a2(t) dx2, (4)

where a(t) is the scalar factor and the spatial curvature, which is unimportant in
this context, is set to zero.

Variation of the action with respect to the gravitational degrees of freedom
yields Einstein’s equations,

F(ϕ)Gµν = −1

2
ϕ;µϕ;ν − 1

2
gµνϕ;aϕ

;a + gµνV (ϕ) + gµν F(ϕ) − � F(ϕ);µ;ν

(5)
where Gµν is the Einstein tensor and

� F(ϕ) = 1√−g
∂α(

√−ggαβ∂β F(ϕ)). (6)

Taking the time–time component of Eq. (5) gives the energy equation

3H 2 = 1

2F(ϕ)

[
1

2
ϕ̇2 + V (ϕ) − 6F ′(ϕ)H ϕ̇

]
, (7)
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where over dots denote time derivatives, H = ȧ/a is the Hubble expansion rate
and F ′(ϕ) ≡ d F(ϕ)/dϕ.

Variation with respect to the matter fields results in the field equation

ϕ̈ + 3H ϕ̇ − 6F ′(ϕ)(Ḣ + 2H 2) + V ′(ϕ) = 0, (8)

where V ′(ϕ) ≡ dV (ϕ)/dϕ.
Finally, combining the time derivative of Eq. (7) with Eq. (8) yields the

momentum equation,

Ḣ = 1

2F(ϕ)

[
−1

2
ϕ̇2 + F ′(ϕ)

(
H ϕ̇ − ϕ̇2

ϕ
− ϕ̈

)]
. (9)

Clearly, according to the Bianchi identity, there are only two independent field
equations.

From Eqs. (7)–(9), we find

ϕ̇ = −(6Fϕ + 12F ′2ϕ + 12F F ′)H 2 + (ϕ + 2F ′)V + ϕF ′V ′

(2Fϕ + 6ϕF ′2)H ′ + (2ϕF ′ + 12F ′2)H
, (10)

where H ′(ϕ) ≡ dH/dϕ. Using Eq. (7) we have

ϕ̇ = 6F ′ H ± �(ϕ), (11)

where

�(ϕ) ≡ [12(3F ′2 + F)H 2 − 2V ]1/2. (12)

It is shown that forF(ϕ) = 1
/

16πG, using Eqs. (7)–(12) we recover the field
equation in the minimal coupling case (Wang, 2001c)

ϕ̇ = − H ′

4πG
. (13)

From Eq. (13) one obtains that in Eq. (11) the positive sign corresponds to H ′(ϕ) <
0 whereas the negative sign corresponds to H ′(ϕ) > 0.

Equation (12) can be rewritten as

V (ϕ) = 18F ′2 H 2 + 6F H 2 − 1

2
�2(ϕ). (14)

Using Eqs. (10), (11), and (14), we obtain

�′(ϕ) +
(

1

2F ′ + 1

ϕ

)
� = ∓

[(
2F

F ′ + 6F ′
)

H ′ +
(

2 + 12F ′

ϕ

)
H

]
. (15)

Its general solution is

�(ϕ) = C(ϕ)ϕ−(k+1)
, (16)
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where k ≡ 1
/

(2ξ ) and the function C(ϕ) is determined by

C ′(ϕ) = ∓ϕk+1

[(
2F

F ′ + 6F ′
)

H ′ +
(

2 + 12F ′

ϕ

)
H

]
, (17)

where a prime denotes differentiation with respect to ϕ.
We now have all the ingredients for a recipe to obtain exact inflationary

solutions. The steps are 1) fromH (ϕ), calculate �(ϕ) using Eqs. (16) and (17), 2)
calculate V (ϕ) using Eq. (14), 3) calculate ϕ(t) from Eq. (11), 4) from H (ϕ) and
ϕ(t) calculate a(t). For this reason, it has been suggested that it is more efficient
to begin by specifying the form of H (ϕ), rather than V (ϕ).

3. EXACT INFLATIONARY SOLUTIONS
IN INDUCED-GRAVITY THEORY

The action, Eq. (1), can be used to study induced gravity. In this section we
considerF(ϕ) = ξϕ2/2.

From Eq. (11) one obtains the following equation to be satisfied by ϕ(t),

ϕ̇ = 3

k
ϕH ± �(ϕ), (18)

The function C(ϕ) is determined by

C ′(ϕ) = ∓ϕk+1

[(
1 + 3

k

)
ϕH ′ + 2

(
1 + 3

k

)
H

]
. (19)

A number of particular cases are instructive:

Example 3.1. The simplest case is

H (ϕ) = H0 ≡ const. (20)

From Eqs. (19) and (20) we find

C(ϕ) = 2

(
1 + 3

k

)
H0

k + 2
ϕk+2, (21)

where the integration constant is assumed to be zero. From Eqs. (16) and (21) we
have

�(ϕ) = 2(k + 3)

k(k + 2)
H0ϕ. (22)

An exact solution of Eq. (18) is

ϕ = ϕ0 exp

(
H0

k + 2
t

)
, (23)
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where ϕ0 is the value of ϕ(t) at the beginning of the inflationary epoch (t = 0).
Using Eqs. (14), (20), and (22) the potential driving this evolution is given as

V (ϕ) = 1

2
m2ϕ2, (24)

where

m2 ≡ (k + 3)(3k + 8)

k(k + 2)2
H 2

0 . (25)

From Eq. (20) we find

a = a0eH0t , (26)

where a0 is the value of a(t) at the beginning of the inflationary epoch (t = 0).
Thus Eqs. (20) and (23)–(26) give the complete exact inflationary solution.

Example 3.2. The ansatz for the exact solution is

H (ϕ) = α

ϕ
, (27)

where α is positive constant parameter.
From Eqs. (19) and (27) we find

C(ϕ) = − k + 3

k(k + 1)
αϕk+1, (28)

where integration constant is assumed to be zero. From Eqs. (16) and (28) we have

�(ϕ) = − k + 3

k(k + 1)
α. (29)

An exact solution of Eq. (18) is

ϕ = ϕ0 + 2α

k + 1
t , (30)

where ϕ0 is the value of ϕ (t) at the beginning of the inflationary epoch (t = 0).
Using Eqs. (14), (27), and (29) the potential driving this evolution is given as

V (ϕ) = (k + 3)(3k + 5)

2k(k + 1)2
. (31)

From Eqs. (27) and (30) we find

a = a0

(
1 + 2α

(k + 1)ϕ0
t

)(k+1)/2α

, (32)

where a0 is the value of a(t) at the beginning of the inflationary epoch (t = 0).
Thus when (k + 1)/2α > 1, Eqs. (27) and (30)–(32) give the complete exact in-
flationary solution. It is worthwhile to point here that, for the case of the minimal
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coupling power-law inflation is normally driven by exponential potentials V (ϕ) ∝
exp (−λϕ), with λ constant >0. From Eq. (32), in the induced-gravity case power-
law inflation is driven by a constant potential.

Example 3.3. Let us assume

H (ϕ) = α − ϕ2, (33)

where α is a positive constant parameter.
From Eqs. (19) and (33) we find

C(ϕ) = 2

(
1 + 3

k

) [
α

k + 2
ϕk+2 − 2

k + 4
ϕk+4

]
, (34)

where integration constant is assumed to be zero. From Eqs. (16) and (34) we have

�(ϕ) = 2

(
1 + 3

k

) [
− α

k + 2
ϕ + 2

k + 4
ϕ3

]
. (35)

An exact solution of Eq. (18) is

ϕ√
A + Bϕ2

= ϕ0√
A + Bϕ2

0

eAt , (36)

where A ≡ α
/

(k + 2) and B ≡ 1
/

(k + 4) are positive parameters; ϕ0 is the value
of ϕ at the beginning of the inflationary epoch (t = 0). The potential driving of
this evolution is given from Eqs. (14), (33), and (35) as

V (ϕ) = A1ϕ
2 + A2ϕ

4 + A3ϕ
6, (37)

where

A1 ≡ (k + 3)(3k + 8)

2k(k + 2)2
α2, (38)

A2 ≡ − (k + 3)(3k + 10)

k(k + 2)(k + 4)
α, (39)

A3 ≡ (k + 3)(3k + 8)

2k(k + 4)2
. (40)

From Eqs. (33) and (36) we find

a = a0eαt

[
1 + Bϕ2

0(1 − e2At )

A

]1/2A

, (41)

where a0is the value of a(t)at the beginning of the inflationary epoch (t = 0). Thus
when ξ < 1/2, Eqs. (33) and (36)–(41) is a possible inflationary model.
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4. EXACT INFLATIONARY SOLUTIONS WITH
NONMINIMAL COUPLING

The action, (1), can be used to study a nonminimal coupling similar to, but
distinct from, that of induced-gravity inflation. In this section we consider F(ϕ) =
1/16πG + ξϕ2/2. In this case Eq. (11) can be rewritten as

ϕ̇ = 3

k
ϕH ± �(ϕ), (42)

where

�(ϕ) ≡
[[

3

4πG
+ 3

k

(
1 + 3

k

)
ϕ2

]
H 2 − 2V

]1/2

. (43)

Equation (15) can be rewritten as

�′(ϕ) + k + 1

ϕ
� = ∓

[[
k

4πGϕ
+

(
1 + 3

k

)
ϕ

]
H ′ + 2

(
1 + 3

k

)
H

]
. (44)

The function C(ϕ) is determined by

C ′(ϕ) = ∓ϕk+1

[(
k

4πGϕ
+

(
1 + 3

k

)
ϕ

)
H ′ + 2

(
1 + 3

k

)
H

]
. (45)

A number of particular cases are instructive:

Example 4.4. The simplest case is

H (ϕ) = H0 ≡ const. (46)

From Eq. (45) we find

a = a0eH0t , (47)

where a0 is the value of a(t) at the beginning of the inflationary epoch (t = 0).
From Eq. (45) we find

C(ϕ) = −2(k + 3)

k(k + 2)
H0ϕ

k+2 + C1, (48)

where C1 is integration constant. From Eq. (16) we find

�(ϕ) = −2(k + 3)

k(k + 2)
H0ϕ + C1ϕ

−(k+1). (49)

Using Eqs. (43), (46), and (49) we find

V (ϕ) = 3H 2
0

8πG
+ (k + 3)(3k + 8)

2k(k + 2)2
H 2

0 ϕ2 + 2(k + 3)

k(k + 2)
C1 H0ϕ

−k − 1

2
C2

1ϕ
−2(k+1).

(50)
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In particular, for the conformally coupling (k = −3), then Eq. (50) implies

V (ϕ) = 3H 2
0

8πG
− 1

2
C2

1ϕ
4. (51)

If we take that V0 ≡ 3H 2
0 /8πG and 2C2

1 ≡ λ, Eq. (51) is rewritten as

V (ϕ) = V0 − λ

4
ϕ4. (52)

An exact solution of Eq. (42) is

ϕ = H0

α − ceH0t
, (53)

where α ≡ C1, and c = α − H0/ϕ0, in which ϕ0 is the value of ϕ(t) at t = 0. The
result is the same as that shown by Wang (1997).

Example 4.5. Let us take the case

H (ϕ) = α1ϕ
2 + α2, (54)

where α1and α2 are positive constant parameters. From Eqs. (45) and (54) we find

C ′(ϕ) =
[

kα1

2πG
+ 2

(
1 + 3

k

)
α2

]
ϕk+1 + 4

(
1 + 3

k

)
α1ϕ

k+3]. (55)

Its general solution is

C(ϕ) = Aϕk+2 + Bϕk+4, (56)

where

A ≡ α1k

2πG(k + 2)
+ 2α2(k + 3)

k(k + 2)
, (57)

B ≡ 4α1(k + 3)

k(k + 4)
. (58)

From Eqs. (16) and (56) we have

� = Aϕ + Bϕ3. (59)

An exact solution of Eq. (42) is

ϕ(t) =
[

A − 3α2
k

C1 exp
[−2

( 3α2
k − A

)
t
] − (

B − 3α1
k

)
]1/2

, (60)

where C1 is integration constant. The scalar field potential is given then by:

V (ϕ) =
[

3

2k

(
1 + 3

k

)
α2

1 − 1

2
B2

]
ϕ6 +

[
3

k

(
1 + 3

k

)
α1α2 + 3α2

1

8πG
− AB

]
ϕ4
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+
[

3

2k

(
1 + 3

k

)
α2

2 + 3α1α2

4πG
− 1

2
A2

]
ϕ2 + 3α2

2

8πG
. (61)

From Eqs. (54) and (60) we find

a = C2

[
C1 exp

[
−2

(
3α2

k
− A

)
t

]

−
(

B − 3α1

k

) ]α1/2(B−3α1/k)

exp

[(
α2 − α1(Ak − 3α2)

Bk − 3α1

)
t

]
, (62)

where C2 is integration constant. Thus Eqs. (54) and (60)–(62) give the complete
exact inflationary solution.

5. CONCLUSIONS

We discuss the general approach to finding exact inflationary solutions in
the generalized Einstein theories. These solutions are found by taking the Hubble
parameter directly as a function of the field ϕ and then determining the evolution of
the expansion scale factor and the potential from it. This allows the full dynamical
behavior of the field to be investigated in terms of the function H (ϕ) without
needing to assume that friction terms in the field equations dominate or that the
field’s kinetic energy is negligible. Moreover, since in principle one may express
all the relevant dynamical information about scalar field models via the function
H (ϕ) and its first derivative, this function may serve as an interesting dynamical
variable to study the models analytically. Therefore, it becomes relatively easy to
construct exact solutions for different functions of H (ϕ).

We have presented simple procedure to construct exact solutions for scalar
field isotropic and spatially flat cosmologies with potential of different shapes. It
is hoped that this method will become fruitful for generating and studying models
of physical interest.
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